Animation and Rendering Basics

• The game loop
• Simple physics
• Euler steps
• Collision detection
• Collision response

Examples are in C#
The game loop

- Core component of most animation applications

```plaintext
while (not done)
    Process any input
    Advance
    Render
    Play sounds
    Message pump
end while
```
Example

- Simple C# example:

```csharp
while (this.Created) {
    Advance();
    Render();
    Application.DoEvents();
}
```
private void Render()
{
 if (device == null)
 return;

 device.Clear(ClearFlags.Target, System.Drawing.Color.Black, 1.0f, 0);

 device.RenderState.ZBufferEnable = false; // We'll not use this feature
 device.RenderState.Lighting = false; // Or this one...
 device.RenderState.CullMode = Cull.None; // Or this one...

 device.Transform.Projection = Matrix.OrthoOffCenterLH(0, worldW, 0, worldH, 0, 1);

 //Begin the scene
 device.BeginScene();

 foreach (Polygon p in objects)
 {
 p.Draw(device);
 }

 //End the scene
 device.EndScene();
 device.Present();
}
Drawing a Square

/// <summary>
/// Current player position
/// </summary>
private Vector2 position = new Vector2(0, 0);

DrawQuad(new Vector2(0, 1) + position,
 new Vector2(0, 2) + position,
 new Vector2(1, 2) + position,
 new Vector2(1, 1) + position, Color.FromArgb(255, 255, 0));
private VertexBuffer drawQuadV = null;

private void DrawQuad(Vector2 v1, Vector2 v2, Vector2 v3, Vector2 v4, Color c)
{
 if (drawQuadV == null)
 {
 drawQuadV = new VertexBuffer(typeof(CustomVertex.PositionColored), // Type of vertex
 4, // How many
device, // What device
 0, // No special usage
 CustomVertex.PositionColored.Format,
 Pool.Managed);
 }

 GraphicsStream gs = drawQuadV.Lock(0, 0, 0); // Lock the background vertex list
 int clr = c.ToArgb();

 gs.Write(new CustomVertex.PositionColored(v1.X, v1.Y, 0, clr));
 gs.Write(new CustomVertex.PositionColored(v2.X, v2.Y, 0, clr));

 drawQuadV.Unlock();

 device.SetStreamSource(0, drawQuadV, 0);
 device.VertexFormat = CustomVertex.PositionColored.Format;
 device.DrawPrimitives(PrimitiveType.TriangleFan, 0, 2);
}
A Box class

/// <summary>
/// A box to draw
/// </summary>
private Box box = new Box();

box.Draw(device, 2, 2, 1, 1, Color.Green);
public class Box
{
 private VertexBuffer vertices = null;

 public void Draw(Device device, float x, float y, float wid, float hit, System.Drawing.Color color)
 {
 if (vertices == null)
 {
 vertices = new VertexBuffer(typeof(CustomVertex.PositionColored),
 4, // How many
 device, // What device
 0, // No special usage
 CustomVertex.PositionColored.Format,
 Pool.Managed);
 }

 GraphicsStream gs = vertices.Lock(0, 0, 0); // Lock the background vertex list
 int clr = color.ToArgb();

 gs.Write(new CustomVertex.PositionColored(x - wid/2, y - hit/2, 0, clr));
 gs.Write(new CustomVertex.PositionColored(x - wid/2, y + hit/2, 0, clr));
 gs.Write(new CustomVertex.PositionColored(x + wid/2, y + hit/2, 0, clr));
 gs.Write(new CustomVertex.PositionColored(x + wid/2, y - hit/2, 0, clr));

 vertices.Unlock();
 device.SetStreamSource(0, vertices, 0);
 device.VertexFormat = CustomVertex.PositionColored.Format;
 device.DrawPrimitives(PrimitiveType.TriangleFan, 0, 2);
 }
}
Advance

• Move things
• Resolve any collisions
 – What’s a collision?
Simple 2D Physics

• Motion of objects in 2D
 – May or may not obey the laws of physics
 – We’ll create general ideas

 – Most of this can be extended to 3D pretty easily, except rotation is more complicated
 – This is a basic introduction and omits details of objects in continuous contact
The basics

• Let $p(t)$ be the position in time.
 – We’ll drop the (t) and just say p

• Other values:
 – v – velocity
 – a - acceleration

\[v = \frac{dp}{dt} \]
\[a = \frac{dv}{dt} = \frac{d^2 p}{dt^2} \]

Velocity is the derivative of position

Acceleration is the derivative of velocity
Vector calculus

• Really, p(t) is a double, right?
 – Sometimes
 – Think of these equations as two equations, one for each dimension
 – This is vector calculus

\[
\begin{bmatrix}
 v_x(t) \\
 v_y(t)
\end{bmatrix} = \begin{bmatrix}
 \frac{dp_x}{dt} \\
 \frac{dp_y}{dt}
\end{bmatrix}
\]
What about real objects?

• Some of the things we’ll know about a real object:
 – Position vector (p)
 – Velocity vector (v)
 – Acceleration vector (a)

• We might also know:
 – Mass

• More to come...
Variables to keep track of state

```csharp
private Vector2 p = new Vector2(0, 0); // Location
private Vector2 v = new Vector2(0, 0); // Linear velocity
private Vector2 a = new Vector2(0, 0); // Linear acceleration
```
Example: Air Resistance

- The resistance of air is proportional to the velocity
 - \(F = -kv \)

- We know \(F = ma \), so: \(ma = -kv \)

\[
ma = -kv
\]

\[
m \frac{dv}{dt} = -kv
\]

So, how can we solve?
Euler’s method

\[m \frac{dv}{dt} = -kv \]

\[\frac{dv}{dt} = - \frac{kv}{m} \]

\[\Delta v \approx - \frac{kv}{m} \Delta t \]

\[v_{i+1} \approx v_i - \frac{kv}{m} \Delta t \]
public void Step(float dt) {
 v.X += a.X * dt;
 v.Y += a.Y * dt;
 p.X += v.X * dt;
 p.Y += v.Y * dt;
 //…
}

- Velocity update
- Position update
Another version

```java
public void Step(float dt) {
    playerSpeed += playerAccel * dt;
    playerLoc += playerSpeed * dt;
}
```

Velocity update

Position update
What about orientation?

• Let Ω be the orientation (angle, radians)
 – Easy in 2D, not so easy in 3D
 – We’ll sometimes call this r

• **How fast we are spinning** is the rotational velocity ω (radians per second)
 – We’ll sometimes call this rv or r_v

• We talk about **rotational** and **linear** terms
Rotational vs. Linear

• Linear
 – Position, velocity, acceleration

• Rotational
 – Orientation, rotational velocity, rotational acceleration
A more complete state as a class

class State
{
 public Vector2 p = new Vector2(0, 0); // Location
 public Vector2 v = new Vector2(0, 0); // Linear velocity
 public Vector2 a = new Vector2(0, 0); // Linear acceleration

 public float r = 0; // Angle
 public float rv = 0; // Rotational velocity
}

Note: Rotation is 1D
Complete Euler step

```java
public void Step(float dt)
{
    state.v.X += state.a.X * dt;
    state.v.Y += state.a.Y * dt;
    state.p.X += state.v.X * dt;
    state.p.Y += state.v.Y * dt;
    state.r += state.rv * dt;

    Move();
}
```

Rotational velocity update

Creates a set of points moved into place
Coding Examples

• Creating state
• Euler steps
• Arrow keys
• Jumping
Defining a polygon

• Rules + Guidelines
 – Convex polygons only
 • You can wrap a rubber band around it and it all of the faces
 • Any line segment connecting two points inside the polygon does not exit the polygon
 – Define the polygon in some “base pose”
 • Put the center of gravity at (0,0)
 – Supply the vertices in clockwise order!
Polygons

Not convex!

Wrong order!
Transforming the polygon vertices

• To draw, we convert the vertices to the destination location
 – Source to destination transformation
 – Rotate, then translate

\[
x' = x \cos(a) - y \sin(a) + p_x
\]
\[
y' = x \sin(a) + y \cos(a) + p_y
\]
private List<Vector2> verticesB = new List<Vector2>(); // Before transformation
private List<Vector2> verticesM = new List<Vector2>(); // After transformation

// Add a vertex to the polygon. Must be called before the
// first rendering of the polygon.
void AddVertex(Vector2 vertex)
 { verticesB.Add(vertex); }

// Create the array of the verticies after being moved
// Converts verticesB to verticesM.
private void Move()
{
 verticesM.Clear(); // Destination
 float ca = (float)Math.Cos(state.r);
 float sa = (float)Math.Sin(state.r);

 foreach (Vector2 v in verticesB)
 {
 Vector2 vp = new Vector2(ca * v.X - sa * v.Y + state.p.X,
 sa * v.X + ca * v.Y + state.p.Y);

 verticesM.Add(vp);
 }
}
Is this enough?

• When do you need how much physics?
 – Up till now can simulate
 • Continuous motion
 • Jumping
 – Set initial velocity, gravity to decelerate
 • Air resistance or friction
 – $a = -k_p v$, $r_a = -k_r v$
 • Gravity
Forces

• What if some force is applied to our objects?
 – We need to know characteristics of the objects
 • Mass
 – Resistance to linear motion
 • Moment of inertia
 – Resistance to rotary motion
Force and torque

• $F_i(t)$
 – Force on point i at time t
 – Vector, of course

Torque on point i: $\tau_i(t) = (p_i(t) - p(t))_\perp \cdot F_i(t)$

Total Force: $F(t) = \sum F_i(t)$

Total Torque: $\tau(t) = \sum \tau_i(t) = \sum (p_i(t) - p(t))_\perp \cdot F_i(t)$
The “perp” operator

- It’s a 90 degree counterclockwise rotation of a vector. \[\tau_i(t) = (p_i(t) - p(t))_\perp \cdot F_i(t) \]

Torque on point i

\[(x, y)_\perp = (-y, x)\]
The “perp” operator

- It’s a 90 degree counterclockwise rotation of a vector.

\[\tau_i(t) = (p_i(t) - p(t))_\perp \cdot F_i(t) \]

Torque on point i

\[(x, y)_\perp = (-y, x) \]

Vector2 \(r = \text{new Vector2}(p_i.X - p.X, p_i.Y - p.Y); \)
float torque = -r.Y * F.X + r.X * F.Y;

The “\(r \)” vector:

\[r_i(t) = p_i(t) - p(t) \]
Compute total forces

Total Force: \[F(t) = \sum F_i(t) \]

Total Torque: \[\tau(t) = \sum \tau_i(t) = \sum \left(p_i(t) - p(t) \right)_\perp \cdot F_i(t) \]
Moment of inertia

\[I = \int m_p \left| r_p \right|^2 dp \]

- \(m_p \): mass at a point
- \(r_p \): vector from center of mass to the point

What are the characteristics?

What does large vs. small mean?

How to we get this value?
Torque and force

\[a_r = \frac{\tau}{I} \]

\[a_l = \frac{F}{M} \]

Rotational Acceleration

Linear Acceleration
Simple dynamics

• Calculate/define center of mass (CM) and moment of inertia (I)
• Set initial position, orientation, linear, and angular velocities
• Determine all forces on the body
• Linear acceleration is sum of forces divided by mass
• Angular acceleration is sum of torques divided by I
• Numerically integrate (Euler step) to update position, orientation, and velocities